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Abstract. This paper introduces the notion of strongly n-projectively core-

solved Gorenstein flat modules (or strongly n-PGF modules, for short), where
n is a nonnegative integer. Using this class, a new characterization of modules

with finite PGF-dimension is given. Moreover, a stability result for the class of

PGF modules, with respect to the very Gorenstein process, is proven.

1. Introduction

In the study of Gorenstein homological algebra, the strongly Gorenstein projective,
strongly Gorenstein injective and strongly Gorenstein flat modules play a central
role as they are used to give simple characterizations of the Gorenstein projective,
Gorenstein injective and Gorenstein flat modules, respectively [3]. Mahdou and
Tamekkante [6] introduced a generalization of the strongly Gorenstein projective,
strongly Gorenstein injective and strongly Gorenstein flat modules, namely the
strongly n-Gorenstein projective, strongly n-Gorenstein injective and strongly n-
Gorenstein flat modules. These modules provide new characterizations of the
Gorenstein projective, injective and flat dimensions of modules [6]. Moreover, the
strongly 0-Gorenstein projective, strongly 0-Gorenstein injective and strongly 0-
Gorenstein flat modules are exactly the strongly Gorenstein projective, strongly
Gorenstein injective and strongly Gorenstein flat modules, respectively. Using a
special class of modules related to strongly Gorenstein flat modules, Bouchiba and
Khaloui [2] proved the stability of the class of Gorenstein flat modules. Sather-
Wagstaff, Sharif and White [8] proved the stability of the classes of Gorenstein
projective and Gorenstein injective modules. Saroch and Stovicek [7] introduced the
class of projectively coresolved Gorenstein flat modules. Dalezios and Emmanouil
[4] studied the relative homological dimension based on this class of modules.

In the first part of this paper, inspired by [6], we introduce the notion of strongly
n-projectively coresolved Gorenstein flat modules (or strongly n-PGF modules, for
short). This class of modules yields a new characterization of modules with finite
PGF-dimension. More precisely, in Theorem 3.20, we prove that a module M has
PGF-dimRpMq ¤ n if and only if it is a direct summand of a strongly n-PGF
module, which is the main result of Section 3.

In the second part of this paper, inspired by [2], we prove the stability of the
class of PGF modules, which is the main result of Section 4. In particular, for every
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exact sequence of PGF modules

G � � � � Ñ G1 Ñ G0 Ñ G0 Ñ G1 Ñ � � �

such that M � ImpG0 Ñ G0q and H b � preserves exactness of G for every
Gorenstein injective module H, the module M is PGF (see Theorem 4.7). A central
role in the proof is played by the subcategory consisting of the R-modules M for
which there exists a short exact sequence of the form 0 ÑM Ñ GÑM Ñ 0, where
G is a PGF module, such that I b� preserves exactness of this sequence for every
injective module I (see Theorem 4.7).

2. Preliminaries

In this section, we collect certain notions and preliminary results that will be
used in the sequel. These involve basic concepts related to Gorenstein homological
algebra. Throughout this paper, R is a unital associative ring and all modules are
left R-modules.

The notions of Gorenstein projective, Gorenstein injective and Gorenstein flat
modules, respectively, were introduced by Holm [5].

Definition 2.1. ([5])

(1) An R-module M is called Gorenstein projective (or G-projective, for short),
if there exists an exact sequence of projective modules

P � � � � Ñ P1 Ñ P0 Ñ P 0 Ñ P 1 Ñ � � �

such that M � ImpP0 Ñ P 0q and such that HomRp�, Qq preserves exactness
of P whenever Q is a projective module.

(2) An R-module M is called Gorenstein injective (or G-injective, for short), if
there exists an exact sequence of injective modules

E � � � � Ñ E1 Ñ E0 Ñ E0 Ñ E1 Ñ � � �

such that M � ImpE0 Ñ E0q and such that HomRpI,�q preserves exactness
of E whenever I is a injective module.

(3) An R-module M is called Gorenstein flat (or G-flat, for short), if there
exists an exact sequence of flat modules

F � � � � Ñ F1 Ñ F0 Ñ F 0 Ñ F 1 Ñ � � �

such that M � ImpE0 Ñ E0q and such that I b� preserves exactness of E
whenever I is a injective module.

Bennis and Mahdou [3] introduced the notions of strongly Gorenstein projective,
strongly Gorenstein injective and strongy Gorenstein flat modules, respectively,
which are special cases of the Gorenstein projective, Gorenstein injective and
Gorenstein flat modules, respectively.

Definition 2.2. ([3])

(1) An R-module M is called strongly Gorenstein projective, if there exists a
short exact sequence of the form

0 ÑM Ñ P ÑM Ñ 0

such that P is a projective module and HomRp�, Qq preserves the exactness
of this sequence, whenever Q is a projective module.
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(2) An R-module M is called strongly Gorenstein injective, if there exists a
short exact sequence of the form

0 ÑM Ñ E ÑM Ñ 0

such that E is an injective module and HomRpI,�q preserves the exactness
of this sequence, whenever I is an injective module.

(3) An R-module M is called stronly Gorenstein flat, if there exists a short
exact sequence of the form

0 ÑM Ñ F ÑM Ñ 0

such that F is an injective module and I b� preserves the exactness of this
sequence, whenever I is an injective module.

Strongly Gorenstein projective, strongly Gorenstein injective and strongly Goren-
stein flat modules, give a simple characterization of Gorenstein projective, Gorenstein
injective and Gorenstein flat modules, respectively, as follows.

Theorem 2.3. ([3, Theorems 2.7 and 3.5])

(1) A module is Gorenstein projective (respectively, injective) if and only if
it is a direct summand of a strongly Gorenstein projective (respectively,
injective) module.

(2) Every Gorenstein flat module is a direct summand of a strongly Gorenstein
flat module.

Mahdou and Tamekkante [6] introduced a generalization of the strongly Gorenstein
projective, strongly Gorenstein injective and strongly Gorenstein flat modules,
namely the strongly n-Gorenstein projective, strongly n-Gorenstein injective and
strongly n-Gorenstein flat modules, respectively.

Definition 2.4. ([6])

(1) An R-module M is called strongly n-Gorenstein projective if there exists a
short exact sequence of the form

0 ÑM Ñ P ÑM Ñ 0

such that pdRpP q ¤ n and Extn�1
R pM,Qq � 0 for every projective module

Q.
(2) An R-module M is called strongly n-Gorenstein injective if there exists a

short exact sequence of the form

0 ÑM Ñ E ÑM Ñ 0

such that idRpEq ¤ n and ExtRn�1pI,Mq � 0 for every injective module I.
(3) An R-module M is called strongly n-Gorenstein flat if there exists a short

exact sequence of the form

0 ÑM Ñ F ÑM Ñ 0

such that fdRpF q ¤ n and TorRn�1pI,Mq � 0 for every injective module I.

Theorem 2.5. ([6, Theorems 2.6, 2.7 and 3.3])

(1) Let M be an R-module and n be a nonnegative integer. Then GpdRpMq ¤ n
(respectively, GidRpMq ¤ n) if and only if M is a direct summand of
a strongly n-Gorenstein projective (respectively, strongly n-Gorenstein
injective) module.
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(2) Let R be a coherent ring, M be an R-module and n be a nonnegative integer.
Then GfdRpMq ¤ n if and only if M is a direct summand of a strongly
n-Gorenstein flat module.

Saroch and Stovicek [7] defined the notion of projectively coresolved Gorenstein
flat modules (or PGF modules, for short).

Definition 2.6. An R-module M is called projectively coresolved Gorenstein flat
(or PGF, for short) if there exists an exact sequence of projective modules

P � � � � Ñ P1 Ñ P0 Ñ P 0 Ñ P 1 Ñ � � � ,

such that M � ImpP0 Ñ P 0q and such that I b � preserves the exactness of P
whenever I is a injective module. The exact sequence P is called a complete PGF
resolution.

The class of PGF R-modules, denoted by PGF(R), is closed under extensions,
direct sums, direct summands and kernels of epimorphisms [7].

The following proposition gives a characterization of PGF modules.

Proposition 2.7. For every module M, the following are equivalent:

(1) M is PGF.
(2) M satisfies the following two conditions:

(i) There exists an exact sequence of the form 0 ÑM Ñ P 0 Ñ P 1 Ñ � � � ,
where each P i is projective, such that I b� preserves exactness of this
sequence for every injective module I.

(ii) TorRi pI,Mq � 0 for every i ¡ 0 and every injective module I.
(3) M satisfies the following two conditions:

(i) There exists an exact sequence of the form 0 ÑM Ñ P 0 Ñ P 1 Ñ � � � ,
where each P i is projective, such that I b� preserves exactness of this
sequence for every injective module I.

(ii) TorRi pI
1,Mq � 0 for every i ¡ 0 and every module I 1 with finite

injective dimension.
(4) There exists a short exact sequence of the form 0 Ñ M Ñ P Ñ G Ñ 0,

where P is projective and G is a PGF module.

Proof. p1q ñ p2q: By definition of PGF modules, there exists an exact sequence of
the form

� � �
d2ÝÑ P1

d1ÝÑ P0
d0ÝÑ P 0 d0

ÝÑ P 1 d1
ÝÑ � � � ,

such that M � Imd0 and such that the sequence

� � �
1bd2ÝÝÝÑ I b P1

1bd1ÝÝÝÑ I b P0
1bd0ÝÝÝÑ I b P 0 1bd0

ÝÝÝÑ I b P 1 1bd1
ÝÝÝÑ � � �

is exact for every injective module I. Let I be an injective module. Applying the

functor I b� on the exact sequence � � �
d2ÝÑ P1

d1ÝÑ P0 Ñ M Ñ 0, we obtain that
I bM � Cokerp1b d1q � Kerp1b d0q. Thus,

0 Ñ I bM Ñ I b P 0 1bd0
ÝÝÝÑ I b P 1 1bd1

ÝÝÝÑ � � �

is exact for every injective module I. Obviously, TorRi pI,Mq � 0 for every i ¡ 0
and every injective module I.
p2q ñ p1q: Consider a projective resolution of M , � � � Ñ P0 Ñ P1 Ñ M Ñ 0.

From (2), there exists an exact sequence of the form 0 Ñ M Ñ P 0 Ñ P 1 Ñ � � � ,
where each P i is projective, such that I b� preserves exactness of this sequence for
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every injective module I. The splicing of the above exact sequences yields the exact
sequence

P � � � � Ñ P1 Ñ P0 Ñ P 0 Ñ P 1 Ñ � � � ,

where M � ImpP0 Ñ P 0q. It remains to prove that the sequence I b P is exact
whenever I is an injective module. Indeed, the homology of the complex I b P
computes the abelian groups TorR� pI,Mq which are trivial by assumption. Thus,
the module M is PGF.
p2q ô p3q: This follows by induction on the injective dimension of I 1.
p4q ñ p2q: Let 0 Ñ M Ñ P Ñ G Ñ 0 be an exact sequence, where P is

projective and G is a PGF module. Since G is PGF, the implication p1q ñ p2q

yields TorRi pI,Gq � 0 for every i ¡ 0 and every injective module I. Let I be an
injective module. Then, the short exact sequence 0 ÑM Ñ P Ñ GÑ 0 induces a
long exact sequence of the form

� � � Ñ TorRi�1pI,Gq Ñ TorRi pI,Mq Ñ TorRi pI, P q Ñ � � � ,

where i ¡ 0, which implies that TorRi pI,Mq � 0 for every i ¡ 0. Moreover, there
exists an exact sequence of the form 0 Ñ G Ñ P 0 Ñ P 1 Ñ � � � , such that I b �
preserves the exactness of this sequence. We obtain an exact sequence of the form

0 ÑM Ñ P Ñ P 0 Ñ P 1 Ñ � � � ,

such that I b� preserves exactness of this sequence for every injective module I.
The implication p1q ñ p4q is clear. �

3. The strongly n-PGF modules

In this section, we define the notion of strongly PGF modules and prove that
a module is PGF if and only if it is a direct summand of a strongly PGF module
(see Theorem 3.5). We also define the notion of strongly n-PGF modules and we
prove a new characterization of modules with finite PGF-dimension. In particular,
we prove that an R module M has PGF-dimRpMq ¤ n if and only if it is a direct
summand of a strongly n-PGF module (see Theorem 3.20).

Definition 3.1. An R-module M is called strongly projectively Gorenstein flat (or
strongly PGF, for short), if there exists a short exact sequence of the form

0 ÑM Ñ P ÑM Ñ 0

such that P is a projective R-module and I b� preserves exactness of this sequence
whenever I is a injective module.

Remark 3.2. Let M be a PGF module. Corollary 4.5 of [7] yields ExtiRpM,P q � 0
for every i ¡ 0 and every projective module P . Thus, every strongly PGF module
is also strongly Gorenstein projective and strongly Gorenstein flat. We also have
ExtiRpM,P 1q � 0 for every i ¡ 0 and every module P 1 with finite projective dimension,
using induction on pdRpP

1q.

We denote by S-PGF(R), S-GProj(R), S-GFlat(R), the classes of strongly PGF,
strongly Gorenstein projective and strongly Gorenstein injective modules respec-
tively.

A schematic presentation is given below:
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GProj(R) GFlat(R)

PGF(R)

S-GProj(R) S-GFlat(R)

S-PGF(R) Flat(R)

Proj(R)

Here, GProj(R) and GFlat(R) are the classes of Gorenstein projective and Gorenstein
injective modules, respectively. See also Propositions 2.3 and 3.2 of [3].

Definition 3.3. An R-module M is called strongly n-projectively Gorenstein flat
(or strongly n-PGF, for short), if there exists a short exact sequence of the form

0 ÑM Ñ F ÑM Ñ 0

such that pdpF q ¤ n and TorRn�1pI,Mq � 0 for every injective module I.

Remark. A direct consequence of the above definition is that the strongly 0-PGF
modules are precisely the strongly PGF modules.

A direct consequence of Definition 3.3 is the following statement.

Corollary 3.4. Every module with projective dimension less than or equal to n is
a strongly n-PGF module.

Proof. Let M be a module with pdpMq ¤ n. Consider the short exact sequence

0 ÑM ÑM `M ÑM Ñ 0

where pdpM ` Mq ¤ n. The inequality fdpMq ¤ pdpMq ¤ n implies that

TorRn�1pI,Mq � 0 for every injective module I. We conclude that M is a strongly
n-PGF module. �

Now we give a new characterization of PGF-modules by means of the notion of
strongly PGF-modules.

Theorem 3.5. A module is PGF if and only if it is a direct summand of a strongly
PGF module.

Proof. We observe that every strongly PGF module is also a PGF module. As the
class of PGF modules is closed under direct summands, we conclude that every
direct summand of a strongly PGF module is a PGF module.

It remains to prove the other implication. Let M be a PGF module. Then, there
exists an exact sequence of projective modules

P � � � � Ñ P1
dP1ÝÝÑ P0

dP0ÝÝÑ P�1

dP
�1
ÝÝÑ P�2 Ñ � � �

such that M � ImpdP0 q and such that I b� preserves exactness of P whenever I is
a injective module.
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For every n P Z, we denote by ΣnP the exact sequence obtained from P by
increasing all indices by n: pΣnPqi � Pi�n and dΣnP

i � dPi�n for every i P Z.
We consider now the exact sequence

à

nPZ
pΣnPq � � � � Ñ

à

iPZ
Pi

À
iPZ d

P
iÝÝÝÝÝÑ
à

iPZ
Pi

À
iPZ d

P
iÝÝÝÝÝÑ
à

iPZ
Pi Ñ � � �

where Imp
À

iPZ d
P
i q �
À

iPZ Imdi and so M is a direct summand of Imp
À

iPZ d
P
i q.

Moreover, from Proposition 20.2 (3) of [1],we obtain the isomorphism of complexes

I b p
à

nPZ
pΣnPqq �

à

nPZ
pI b ΣnPq

which is an exact sequence for every injective module I. Thus, Imp
À

iPZ d
P
i q is a

strongly PGF module and M is a direct summand of this strongly PGF module. �

The next result gives a simple characterization of strongly PGF modules.

Proposition 3.6. For every module M, the following are equivalent:

(1) M is strongly PGF.
(2) There exists a short exact sequence 0 ÑM Ñ P ÑM Ñ 0 such that P is a

projective R-module and TorR1 pI,Mq � 0 for every injective module I.
(3) There exists a short exact sequence 0 ÑM Ñ P ÑM Ñ 0 such that P is a

projective R-module and TorRi pI,Mq � 0 for every i ¡ 0 and every injective
module I.

(4) There exists a short exact sequence 0 ÑM Ñ P ÑM Ñ 0 such that P is

a projective R-module and TorR1 pI
1,Mq � 0 for every module I 1 with finite

injective dimension.
(5) There exists a short exact sequence 0 ÑM Ñ P ÑM Ñ 0 such that P is a

projective R-module and TorRi pI
1,Mq � 0 for every i ¡ 0 and every module

I 1 with finite injective dimension.
(6) There exists a short exact sequence 0 ÑM Ñ P ÑM Ñ 0 such that P is

a projective R-module and I 1 b� preserves exactness of this sequence for
every module I 1 with finite injective dimension.

Proof. This follows immediately from the Definition 3.3 of strongly PGF modules,
using standard arguments. �

Proposition 3.6 yields the following corollary about projective modules.

Corollary 3.7. Every projective module is strongly PGF module.

Proof. This is an immediate consequence of Corollary 3.4. �

Remark 3.8. A strongly PGF module is projective if and only if it has finite
projective dimension.

Remark 3.9. A strongly PGF module is finitely generated if and only if it is finitely
presented.

The next result gives a simple characterization of strongly n-PGF modules.

Proposition 3.10. For every module M, the following are equivalent:

(1) M is strongly n-PGF.
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(2) There exists a short exact sequence 0 Ñ M Ñ F Ñ M Ñ 0 such that

pdRpF q ¤ n and TorRi pI,Mq � 0 for every i ¡ n and every injective module
I.

(3) There exists a short exact sequence 0 Ñ M Ñ F Ñ M Ñ 0 such that

pdRpF q ¤ n and TorRi pI
1,Mq � 0 for every i ¡ n and every module I 1 with

finite injective dimension.
(4) There exists a short exact sequence 0 Ñ M Ñ F Ñ M Ñ 0 such that

pdRpF q ¤ n and TorRn�1pI
1,Mq � 0 for every module I 1 with finite injective

dimension.

Proof. p1q ñ p2q: By the definition of strongly n-PGF modules, there exists a short

exact sequence 0 ÑM Ñ F ÑM Ñ 0 such that pdRpF q ¤ n and TorRn�1pI,Mq � 0
for every injective module I. Let I be an injective R-module. We will prove that
TorRi pI,Mq � 0 for every i ¡ n. The short exact sequence induces a long exact
sequence of the form

� � � Ñ TorRi�1pI, F q Ñ TorRi�1pI,Mq Ñ TorRi pI,Mq Ñ TorRi pI, F q Ñ � � �

for every i ¡ n. Since fdRpF q ¤ pdRpF q ¤ n, we obtain that TorRi pI, F q � 0 for

i ¡ n. Thus, TorRi�1pI,Mq � TorRi pI,Mq for every i ¡ n. Since TorRn�1pI,Mq � 0,

we conclude that TorRi pI,Mq � 0 for every i ¡ n.
p2q ñ p3q: We assume that there exists a short exact sequence of the form

0 ÑM Ñ F ÑM Ñ 0, such that pdRpF q ¤ n and TorRi pI,Mq � 0 for every i ¡ n
and every injective module I. Let I 1 be a module with finite injective dimension
0 ¤ idRpI

1q � m   8. We will prove that TorRi pI
1,Mq � 0 for every i ¡ n, by

induction on m. We consider an injective resolution of I 1 of length m

0 Ñ I 1 Ñ I0 Ñ � � � Ñ Im Ñ 0.

The case m � 0 is trivial, since I 1 is injective. Assume that m ¡ 0 and let
J � CokerpI 1 Ñ I0q to obtain the short exact sequence

0 Ñ I 1 Ñ I0 Ñ J Ñ 0.

This short exact sequence induces a long exact sequence of the form

� � � Ñ TorRi�1pJ,Mq Ñ TorRi pI
1,Mq Ñ TorRi pI0,Mq Ñ � � �

where i ¡ n. Since idRpJq ¤ m � 1, our induction hypothesis implies that

TorRi�1pJ,Mq � 0 for every i ¡ n. We also have TorRi pI0,Mq � 0 for every i ¡ n,

since I0 is injective. Therefore, the long exact sequence implies that TorRi pI
1,Mq � 0

for every i ¡ n.
The implications p3q ñ p4q and p4q ñ p1q are clear. �

Proposition 3.11. Let n be a nonnegative integer and pMiqi be a family of strongly
n-PGF modules. Then, the direct sum M �

À
iMi is also a strongly n-PGF module.

Proof. Since the modules Mi are strongly n-PGF, by definition there exist short
exact sequences of the form 0 Ñ Mi Ñ Fi Ñ Mi Ñ 0, where pdRpFiq ¤ n and

TorRn�1pI,Miq � 0 for every i and every injective module I. Thus, we obtain a short
exact sequence of the form

0 Ñ
à

i

Mi Ñ
à

i

Fi Ñ
à

i

Mi Ñ 0
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where pdRp
À

i Fiq � supitpdRpFiqu ¤ n and

TorRn�1pI,
à

i

Miq �
à

i

TorRn�1pI,Miq � 0

for every injective module I. Thus, M �
À

iMi is strongly n-PGF. �

Dalezios and Emmanouil [4] defined the following notions.

Definition 3.12. ([4, Proposition 2.2]) We say that a module M has a PGF-
resolution of length n if there exists an exact sequence of the form

0 Ñ Gn Ñ Gn�1 Ñ � � � Ñ G0 ÑM Ñ 0,

where G0, . . . , Gn�1, Gn are PGF modules.
The PGF-dimension of a module M , denoted by PGF-dimRpMq, is defined by

declaring that PGF-dimRpMq ¤ n if and only if M has a PGF-resolution of length n.
In the case where PGF-dimRpMq ¤ n and M has no PGF-resolution of length less
than n, we say that M has PGF-dimension equal to n and write PGF-dimRpMq � n.
Finally, we say that M has infinite PGF-dimension and write PGF-dimRpMq � 8,
if M has no PGF-resolution of finite length.

Throughout the rest of this section, we use the following results concerning
PGF-dimRpMq from [4].

Proposition 3.13. ([4, Proposition 2.3]) Let pMiqi be a family of modules and
M �
À

iMi be their direct sum. Then, PGF-dimRpMq � supiPGF-dimRpMiq.

Proposition 3.14. ([4, Propositions 2.4 and 3.6])
Let 0 ÑM 1 ÑM ÑM2 Ñ 0 be a short exact sequence of modules. Then,

(1) PGF-dimRpMq ¤ maxtPGF-dimRpM
1q,PGF-dimRpM

2qu,
(2) PGF-dimRpM

1q ¤ maxtPGF-dimRpMq,PGF-dimRpM
2q � 1u,

(3) PGF-dimRpM
2q ¤ maxtPGF-dimRpMq,PGF-dimRpM

1q � 1u.

Theorem 3.15. ([4, Theorem 3.4]) Let M be a module and n a nonnegative integer.
Then, PGF-dimRpMq � n ¥ 0 if and only if there exists a short exact sequence of
the form

0 ÑM Ñ D Ñ GÑ 0

where G is a PGF-module and pdRpDq � n.

Proposition 3.16. ([4, Corollary 3.7]) Let M be a module such that pdRpMq   8.
Then, PGF-dimRpMq � pdRpMq.

We continue with our results of this section.

Proposition 3.17. Let n be a positive integer and M be a strongly n-PGF module.
Then, the following hold:

(1) If 0 Ñ N Ñ Pn�1 Ñ � � � Ñ P0 ÑM Ñ 0 is an exact sequence where all Pi
are projective, then N is strongly PGF and consequently PGF-dimRpMq ¤ n.

(2) Moreover, if 0 Ñ M Ñ F Ñ M Ñ 0 is a short exact sequence where
pdRpF q   8, then PGF-dimRpMq � pdpF q and consequently M is strongly
k-PGF with k :� pdRpF q.

Proof. p1q Since M is strongly n-PGF, there exists a short exact sequence of the form

0 Ñ M Ñ F Ñ M Ñ 0, such that pdRpF q ¤ n and TorRn�1pI,Mq � 0 for every
injective module I. Since the exact sequence 0 Ñ N Ñ Pn�1 Ñ � � � Ñ P0 ÑM Ñ 0
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is a truncated projective resolution of M , there is a module Q such that the following
diagram is commutative:

0 0 0 0

0 N Pn�1 � � � P0 M 0

0 Q Pn�1 ` Pn�1 � � � P0 ` P0 F 0

0 N Pn�1 � � � P0 M 0

0 0 0 0

Since pdRpF q ¤ n, it follows that Q is projective module. We observe that

TorR1 pI,Nq � TorRn�1pI,Mq � 0 for every injective module I. Thus, by Propo-
sition 3.6 (2), we conclude that the module N is strongly PGF.
p2q We consider a short exact sequence of the form 0 ÑM Ñ F ÑM Ñ 0, such

that pdRpF q � k   8. Consider a truncated projective resolution of the module M
of length n

0 Ñ N Ñ Pn�1 Ñ � � � Ñ P0 ÑM Ñ 0.

Using p1q which we have already proved, we obtain that N is strongly PGF. By
Proposition 3.6 (2), there exists a short exact sequence 0 Ñ N Ñ P Ñ N Ñ 0 such

that P is projective and TorRi pI,Nq � 0 for every i ¡ 0 and every injective module

I. Then, TorRn�ipI,Mq � TorRi pI,Nq � 0 for every i ¡ 0 and every injective module
I. Let I be an injective module. The short exact sequence 0 Ñ N Ñ P Ñ N Ñ 0
induces a long exact sequence of the form

� � � Ñ TorRi�1pI, F q Ñ TorRi�1pI,Mq Ñ TorRi pI,Mq Ñ TorRi pI, F q Ñ � � �

for every injective module I, where i ¡ 0. The inequality fdRpF q ¤ pdRpF q � k

implies that TorRi pI, F q � 0 whenever i ¡ k. The long exact sequence above yields

TorRi�1pI,Mq � TorRi pI,Mq for every i ¡ k. Thus, TorRi pI,Mq � TorRn�ipI,Mq �

TorRi pI,Nq � 0 for every i ¡ k. By Proposition 3.10 (2), we conclude that M
is strongly k-PGF. It remains to prove that PGF-dimRpMq � k. By (1) we
have PGF-dimRpMq ¤ k. Since pdRpF q � k   8, Proposition 3.16 implies that
PGF-dimRpF q � pdRpF q � k. Using Proposition 3.14 (1) and the short exact
sequence 0 Ñ M Ñ F Ñ M Ñ 0, we get the inequality k � PGF-dimRpF q ¤
PGF-dimRpMq. We conclude that PGF-dimRpMq � k. �

Proposition 3.18. Let M be an R-module with finite PGF-dimension and let n
be a nonnegative integer such that PGF-dimRpMq ¤ n. Then, TorRi pI

1,Mq � 0 for
every i ¡ n and every module I 1 with finite injective dimension.

Proof. Since PGF modules are Gorenstein flat, the PGF dimension bounds the
Gorenstein flat dimension. The result is known for modules of finite Gorenstein flat
dimension (see [5, Theorem 3.14]). �
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Proposition 3.19. Let M be an R-module with finite PGF dimension. Then, the
module M is strongly n-PGF if and only if there exists a short exact sequence of the
form 0 ÑM Ñ F ÑM Ñ 0, where pdRpF q ¤ n.

Proof. Let M be a strongly n-PGF module. By definition, there exists a short exact
sequence of the form 0 ÑM Ñ F ÑM Ñ 0, where pdRpF q ¤ n.

Conversely, let M be a module such that there exists a short exact sequence of
the form 0 ÑM Ñ F ÑM Ñ 0, where pdRpF q ¤ n. By assumption, there exists
a nonnegative integer k such that PGF-dimRpMq ¤ k. Let I be an injective module.

Then, Proposition 3.18 yields TorRi pI,Mq � 0 for every i ¡ k. The inequality

fdRpF q ¤ pdRpF q ¤ n implies that TorRi pI, F q � 0 for every i ¡ n. The short exact
sequence 0 ÑM Ñ F ÑM Ñ 0 induces a long exact sequence of the form

� � � Ñ TorRi�1pI, F q Ñ TorRi�1pI,Mq Ñ TorRi pI,Mq Ñ TorRi pI, F q Ñ � � � ,

where i ¡ 0. We obtain that TorRi�1pI,Mq � TorRi pI,Mq for every i ¡ n. Equiva-

lently, we have TorRn�1pI,Mq � TorRn�ipI,Mq for every i ¡ 0. Thus, letting n�i ¡ k,

we get TorRn�1pI,Mq � TorRn�ipI,Mq � 0 and the module M is strongly n-PGF. �

Theorem 3.20. Let M be an R-module and n a nonnegative integer. Then,
PGF-dimRpMq ¤ n if and only if M is a direct summand of a strongly n-PGF
module.

Proof. If n � 0, then M is a PGF-module and the result holds by Theorem 3.5. We
assume now that 0   PGF-dimRpMq ¤ n. By Theorem 3.15, there exists a short
exact sequence of the form

0 ÑM Ñ D Ñ G0 Ñ 0,

where G0 is PGF and pdRpDq � PGF-dimRpMq ¤ n. We consider now a truncated
projective resolution of M of length n

0 Ñ Gn�1 Ñ Pn�1 Ñ � � � Ñ P0 ÑM Ñ 0,

where Pi is projective for every i such that 0 ¤ i ¤ n�1 and Gn�1 is a PGF module
(see [4, Proposition 2.2]). Let G0 � KerpP0 Ñ Mq and Gi � KerpPi Ñ Pi�1q
for every i ¥ 1. Then, by Proposition 3.14 (2) and the short exact sequence
0 Ñ G0 Ñ P0 Ñ M Ñ 0, we have PGF-dimRpG0q ¤ n. Using again Proposition
3.14 (2) and the short exact sequences 0 Ñ Gi Ñ Pi Ñ Gi�1 Ñ 0 where 1 ¤ i ¤ n�1,
an inductive argument on i shows that PGF-dimRpGiq ¤ n for every i such that
0 ¤ i ¤ n� 1. We consider now a projective resolution of Gn�1

� � � Ñ Pn�2 Ñ Pn�1 Ñ Pn Ñ Gn�1 Ñ 0

and let Gi � ImpPi�1 Ñ Piq for every i ¥ n. Since Gn�1 is a PGF module and
the class of PGF modules is closed under kernels of epimorphisms, the short exact
sequence 0 Ñ Gn Ñ Pn Ñ Gn�1 Ñ 0 implies that Gn is also PGF. Using induction
on i and the short exact sequences 0 Ñ Gi Ñ Pi Ñ Gi�1 Ñ 0 for i ¥ n, the same
argument implies that Gi is a PGF-module for every i ¥ n� 1. We conclude that
PGF-dimRpGiq ¤ n for every i ¥ 0.

Since G0 is a PGF-module, by definition it admits a right projective resolution

0 Ñ G0 Ñ P 0 Ñ P 1 Ñ P 2 Ñ � � � .

By the definition of PGF modules, Gi � ImpP i�1 Ñ P iq is a PGF module for every
i ¥ 1. Thus PGF-dimRpG

iq � 0 for every i ¥ 0.
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To summarize, we have the following short exact sequences

...
...

...
0 ÝÑ G1 ÝÑ P 1 ÝÑ G2 ÝÑ 0
0 ÝÑ G0 ÝÑ P 0 ÝÑ G1 ÝÑ 0
0 ÝÑ M ÝÑ D ÝÑ G0 ÝÑ 0
0 ÝÑ G0 ÝÑ P0 ÝÑ M ÝÑ 0
0 ÝÑ G1 ÝÑ P1 ÝÑ G0 ÝÑ 0
0 ÝÑ G2 ÝÑ P2 ÝÑ G1 ÝÑ 0

...
...

...

and the direct sum of them yields the short exact sequence 0 Ñ N Ñ QÑ N Ñ 0,
where N �

À
i¥0G

i
À
M
À

j¥0Gj and Q �
À

i¥0 P
i
À
D
À

j¥0 Pj . Then, we

obviously have pdRpQq � pdRpDq ¤ n. Using Proposition 3.13 we get

PGF-dimRpNq � supi,j¥0tPGF-dimRpG
iq,PGF-dimRpMq,PGF-dimRpGjqu ¤ n.

Thus, Proposition 3.18 yields TorRn�1pI,Nq � 0 for every injective module I. We
conclude that N is strongly n-PGF and M is a direct summand of N .

Conversely, let M be a direct summand of a strongly n-PGF module N . Then,
Proposition 3.13 yields PGF-dimRpMq ¤ PGF-dimRpNq. Since N is strongly n-
PGF, Proposition 3.17 (2) implies that PGF-dimRpNq ¤ n. We conclude that
PGF-dimRpMq ¤ n. �

Corollary 3.21. Every strongly n-PGF module is strongly m-PGF for every positive
integer m ¡ n.

Proof. Let M be a strongly n-PGF module. By definition, there exists a short
exact sequence of the form 0 Ñ M Ñ F Ñ M Ñ 0 where pdRpF q ¤ n and

TorRn�1pI,Mq � 0 for every injective module I. Let m ¡ n be an integer. Then
pdRpF q ¤ m. Since the module M is strongly n-PGF, Theorem 3.20 implies that
PGF-dimRpMq ¤ n. Thus, PGF-dimRpMq ¤ m and using Proposition 3.18 we

obtain that TorRm�1pI,Mq � 0 for every injective module I. By definition, M is a
strongly m-PGF module for every integer m ¡ n. �

Proposition 3.22. Let M be a strongly n-PGF module, where n ¡ 0. Then, there
exists a short exact sequence

0 Ñ K Ñ N ÑM Ñ 0,

where N is a strongly PGF-module and pdRpKq � PGF-dimRpMq � 1 ¤ n� 1.

Proof. Consider a truncated projective resolution of M of length n

0 Ñ GÑ Pn�1 Ñ � � � Ñ P0 ÑM Ñ 0.

Since M is a strongly n-PGF module, Proposition 3.17 (1) implies that the module
G is strongly PGF. By the definition of strongly PGF modules, there exists an exact
sequence of the form

0 Ñ GÑ QÑ � � � Ñ QÑ GÑ 0,

where all kernels are equal to G and Q is a projective module. Since every strongly
PGF module is also PGF, Corollary 4.5 of [7] implies that the latter exact sequence
remains exact after applying the functor HomRp�, P q for every projective module
P . We conclude that there exists a morphism of complexes:
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0 G Q � � � Q G 0

0 G Pn�1 � � � P0 M 0

�

The unlabeled vertical arrows induce a quasi-isomorphism between the corresponding
complexes. Hence, we may consider the associated mapping cone

0 Ñ QÑ Q` Pn�1 Ñ � � � Ñ Q` P1 Ñ G` P0
π
ÝÑM Ñ 0,

which is an exact sequence. The modules Q,Q ` P1, . . . , Q ` Pn�1 are clearly
projective and the module G` P0 is a strongly PGF-module by Corollary 3.7 and
Proposition 3.11. Now we set N � G` P0 and K � Kerpπq. Thus, we obtain the
short exact sequence 0 Ñ K Ñ N Ñ M Ñ 0 where pdRpKq ¤ n � 1 and N is a
strongly PGF-module.

Since M is strongly n-PGF, Theorem 3.20 yields k :� PGF-dimRpMq ¤ n and
the same argument implies that pdRpKq � k � 1. If k � 0, this is understood to
mean K � 0. �

Proposition 3.23. Let 0 Ñ N Ñ P ÑM Ñ 0 be an exact sequence of R-modules,
where P is projective and PGF-dimRpMq � n   8.

(1) If M is strongly PGF, then N is also strongly PGF.
(2) If n ¥ 1 and M is strongly n-PGF, then N is strongly pn � 1q-PGF and

PGF-dimRpNq � n� 1.

Proof. (1) Since M is strongly PGF , by Proposition 3.6 (3) there exists a short
exact sequence of the form 0 Ñ M Ñ Q Ñ M Ñ 0, where Q is projective and
TorRi pI,Mq � 0 for every i ¡ 0 and every injective module I. Moreover, there exists
a module Q1 such that the following diagram is commutative:

0 0 0

0 N P M 0

0 Q1 P ` P Q 0

0 N P M 0

0 0 0

Since the modules P and Q are projectives, Q1 is also projective. Now, let I be an
injective module. The short exact sequence 0 Ñ N Ñ P ÑM Ñ 0 induces a long
exact sequence of the form

� � � Ñ TorRi�1pI,Mq Ñ TorRi pI,Nq Ñ TorRi pI, P q Ñ � � � ,

where i ¡ 0. Then, TorRi pI,Nq � 0 for every i ¡ 0 and every injective module I.
Thus, by Proposition 3.6 (3), N is strongly PGF.

(2) Since M is strongly n-PGF, by Proposition 3.10 (2) there exists a short
exact sequence of the form 0 Ñ M Ñ F Ñ M Ñ 0, where pdRpF q ¤ n and
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TorRi pI,Mq � 0 for every i ¡ n and every injective module I. We also have
PGF-dimRpMq � n, thus Proposition 3.17 (2) yields pdRpF q � n. Moreover, there
exists a module F 1 such that the following diagram is commutative:

0 0 0

0 N P M 0

0 F 1 P ` P F 0

0 N P M 0

0 0 0

Since the module P is projective, pdRpF
1q � n � 1. Now, let I be an injective

module. The short exact sequence 0 Ñ N Ñ P Ñ M Ñ 0 induces a long exact
sequence of the form

� � � Ñ TorRi�1pI,Mq Ñ TorRi pI,Nq Ñ TorRi pI, P q Ñ � � � ,

where i ¡ 0. Then, TorRi pI,Nq � 0 for every i ¡ n� 1 and every injective module
I. Thus, by Proposition 3.10 (2), N is strongly pn� 1q-PGF. Furthermore, since
PGF-dimRpMq � n, using Proposition 3.6 by [4] and the short exact sequence
0 Ñ N Ñ P ÑM Ñ 0 we get PGF-dimRpNq � n� 1. �

Proposition 3.24. Let 0 Ñ N
α
ÝÑ P

β
ÝÑM Ñ 0 be an exact sequence of R-modules,

where pdRpP q � n   8 and N is a strongly PGF module. Then, M is strongly
pn� 1q-PGF.

Proof. Since N is strongly PGF, there exists a short exact sequence of the form

0 Ñ N
γ
ÝÑ Q

δ
ÝÑ N Ñ 0, where Q is a projective module and Ext1

RpN,Q
1q � 0

for every module Q1 with finite projective dimension (see Remark 3.2). Since
pdRpP q � n   8, we have the following short exact sequence

0 Ñ HomRpN,P q
δ�
ÝÝÑ HomRpQ,P q

γ�

ÝÝÑ HomRpN,P q Ñ 0.

Thus, there exists a morphism ε : QÑ P such that α � ε � γ.
We consider now the following commutative diagram

0 N Q N 0

0 P P ` P P 0

γ

α ζ

δ

α

i π

where ζ � pε, α�δq and i and π are the canonical injection and projection respectively.
The Snake Lemma yields the following short exact sequence

0 ÑM Ñ pP ` P q{Impζq ÑM Ñ 0.

We observe that ζ is a monomorphism, thus pdRppP ` P q{Impζqq ¤ n� 1. Since
pdRpP q � n   8, using Proposition 3.14 (3), Proposition 3.16 and the short
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exact sequence 0 Ñ N
α
ÝÑ P

β
ÝÑ M Ñ 0 we obtain that PGF-dimRpMq ¤ n � 1.

Then, Proposition 3.18 implies that TorRn�2pI,Mq � 0 for every injective module I.
Consequently, the module M is strongly pn� 1q-PGF. �

Proposition 3.25. Let 0 Ñ N
α
ÝÑM

β
ÝÑ P Ñ 0 be an exact sequence of R-modules,

where pdRpP q � n   8.

(1) If n ¡ 0 and M is strongly PGF, then N is strongly pn� 1q-PGF.
(2) If P is projective, then N is strongly PGF if and only if M is strongly PGF.

Proof. Let M be a strongly PGF module. By Proposition 3.6 (3), there exists a

short exact sequence of the form 0 ÑM
γ
ÝÑ Q

δ
ÝÑM Ñ 0, where Q is a projective

module and TorRi pI,Mq � 0 for every i ¡ 0 and every injective module I. We also
have Ext1

RpM,Q1q � 0 for every module Q1 with finite projective dimension (see
Remark 3.2). Since pdRpP q � n   8, we have the following short exact sequence

0 Ñ HomRpM,P q
δ�
ÝÝÑ HomRpQ,P q

γ�

ÝÝÑ HomRpM,P q Ñ 0.

Thus, there exists a morphism ε : QÑ P such that β � ε � γ.
We consider now the following commutative diagram:

0 M Q M 0

0 P P ` P P 0

γ

β ζ

δ

β

i π

where ζ � pε, β�δq and i and π are the canonical injection and projection respectively.
The Snake Lemma yields the following short exact sequence

0 Ñ N Ñ Kerpζq Ñ N Ñ 0.

We observe that ζ is an epimorphism.
(1) If n ¡ 0, then pdRpKerpζqq � n�1. Since pdRpP q � n   8, using Proposition

3.14 (2), Proposition 3.16 and the short exact sequence 0 Ñ N
α
ÝÑ M

β
ÝÑ P Ñ 0

we obtain that PGF-dimRpNq ¤ n � 1. Then, Proposition 3.18 implies that

TorRn pI,Nq � 0 for every injective module I. Thus, N is strongly pn� 1q-PGF.
(2) If M is strongly PGF and P is projective, then Kerpζq is also projective. Let

I be an injective module. Then, the short exact sequence 0 Ñ N
α
ÝÑM

β
ÝÑ P Ñ 0

induces a long exact sequence of the form

� � � Ñ TorRi�1pI, P q Ñ TorRi pI,Nq Ñ TorRi pI,Mq Ñ TorRi pI, P q Ñ � � � ,

where i ¡ 0. Since P is projective, TorRi pI,Nq � TorRi pI,Mq � 0 for every i ¡ 0.
Thus, Proposition 3.6 (3) implies that N is strongly PGF. For the other implication
of (2), we assume that N is strongly PGF. Since P is projective, the short exact

sequence 0 Ñ N
α
ÝÑM

β
ÝÑ P Ñ 0 splits. Consequently, M � N ` P , which is also a

strongly PGF module by Corollary 3.7 and Proposition 3.11. �

Corollary 3.26. The following are equivalent.

(1) Every PGF module is strongly PGF.
(2) Every module M such that PGF-dimRpMq ¤ 1 is a strongly 1-PGF module.
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Proof. p1q ñ p2q : Let M be a module such that PGF-dimRpMq ¤ 1. We consider
a truncated projective resolution of M of length 1, 0 Ñ N Ñ P Ñ M Ñ 0.
Proposition 2.2 of [4] implies that N is PGF. Thus, N is strongly PGF by (1). By
Proposition 3.24, M is strongly 1-PGF.
p2q ñ p1q : Let M be a PGF module. Then by (2), M is strongly 1-PGF and

there exists a short exact sequence of the form 0 Ñ M Ñ F Ñ M Ñ 0, where
pdRpF q ¤ 1. By Proposition 3.14 (1), the module F is also PGF. Since pdRpF q   8,
Proposition 3.16 implies that F is projective. Moreover, Proposition 3.18 yields
TorRi pI,Mq � 0 for every i ¡ 0 and every injective module I. Thus, by Proposition
3.6 (3), M is strongly PGF. �

4. The stability of PGF modules

In this section we prove that the class of PGF modules is stable under the very
Gorenstein process used to define PGF modules. In particular, for every exact
sequence of PGF modules

G � � � � Ñ G1 Ñ G0 Ñ G0 Ñ G1 Ñ � � �

such that M � ImpG0 Ñ G0q and such that the functor H b � preserves the
exactness of G whenever H is a Gorenstein injective module, we obtain that the
module M is PGF.

Throughout this section we use the following notation.

We denote by PGFp2qpRq (respectively, PGF
p2q
I pRq) the subcategory of the R-

modules M for which there exists an exact sequence of PGF modules

G � � � � Ñ G1 Ñ G0 Ñ G0 Ñ G1 Ñ � � � ,

such that M � ImpG0 Ñ G0q and such that H b� (respectively, I b�) preserves
the exactness of G whenever H is a Gorenstein injective module (respectively, I is
an injective module).

Since every injective module is also Gorenstein injective, we have the following
inclusions

PGFpRq � PGFp2qpRq � PGF
p2q
I pRq.

Also, we denote by S-PGF
p2q
I pRq the subcategory of the R-modules M for which

there exists a short exact sequence of the form 0 ÑM Ñ GÑM Ñ 0, where G is
a PGF module, such that I b� preserves the exactness of this sequence whenever
I is an injective module.

Proposition 4.1. Let M P PGF
p2q
I pRq. Then, TorRi pI

1,Mq � 0 for every i ¡ 0
and every module I 1 with finite injective dimension.

Proof. Let M P PGF
p2q
I pRq and I 1 be a module with finite injective dimension. By

definition, there exists an exact sequence of PGF modules

G � � � � Ñ G1 Ñ G0 Ñ G0 Ñ G1 Ñ � � � ,

where M � ImpG0 Ñ G0q and the sequence I b G is exact for every injective
module I. Let I 1 be a module with idRpI

1q � n   8. We proceed by induction
on n ¥ 0. Consider the short exact sequence 0 Ñ K Ñ G0 Ñ M Ñ 0, where

K � ImpG1 Ñ G0q P PGF
p2q
I pRq. Then, for every injective module I 1 we have the

following short exact sequence

0 Ñ I 1 bK Ñ I 1 bG0 Ñ I 1 bM Ñ 0.
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Since the module G0 is PGF, Proposition 2.7 (2) implies that TorRi pI
1, G0q � 0 for

every i ¡ 0. Thus, the short exact sequence 0 Ñ K Ñ G0 ÑM Ñ 0 induces a long
exact sequence of the form

� � � Ñ TorR1 pI
1, G0q Ñ TorR1 pI

1,Mq Ñ I 1 bK Ñ I 1 bG0 Ñ I 1 bM Ñ 0,

which implies that TorR1 pI
1,Mq � 0. Consequently, we have proved the fact that

TorR1 pI
1,Mq � 0 for every module M P PGF

p2q
I pRq and every injective module I 1.

Moreover, the long exact sequence

� � � Ñ TorRi�1pI
1, G0q Ñ TorRi�1pI

1,Mq Ñ TorRi pI
1,Kq Ñ TorRi pI

1, G0q Ñ � � � ,

where i ¡ 0, yields TorRi�1pI
1,Mq � TorRi pI

1,Kq for every i ¡ 0. Thus, using

induction on i and the fact that K lies in PGF
p2q
I pRq, we obtain that TorRi pI

1,Mq � 0
for every i ¡ 0 and every injective module I 1.

We suppose now that n ¥ 1 and consider an injective resolution of I 1 of length n

0 Ñ I 1 Ñ I0 Ñ I1 Ñ � � � Ñ In Ñ 0.

Then, the module J � ImpI0 Ñ I1q has injective dimension at most n� 1 and our

inductive hypothesis implies that TorRi pJ,Mq � 0 for every i ¡ 0. Thus, the short
exact sequence 0 Ñ I 1 Ñ I0 Ñ J Ñ 0 induces a long exact sequence of the form

� � � Ñ TorRi�1pJ,Mq Ñ TorRi pI
1,Mq Ñ TorRi pI0,Mq Ñ � � � ,

where i ¡ 0, from which we obtain that TorRi pI
1,Mq � 0 for every i ¡ 0. �

The following proposition gives a characterization of the subcategory S-PGF
p2q
I pRq.

Proposition 4.2. For every module M, the following are equivalent:

(1) M P S-PGF
p2q
I pRq.

(2) There exists a short exact sequence 0 ÑM Ñ GÑM Ñ 0 such that G is a

PGF module and TorR1 pI,Mq � 0 for every injective module I.
(3) There exists a short exact sequence 0 Ñ M Ñ G Ñ M Ñ 0 such that G

is a PGF module and TorRi pI,Mq � 0 for every i ¡ 0 and every injective
module I.

(4) There exists a short exact sequence 0 ÑM Ñ GÑM Ñ 0 such that G is a

PGF module and TorR1 pI
1,Mq � 0 for every module I 1 with finite injective

dimension.
(5) There exists a short exact sequence 0 ÑM Ñ GÑM Ñ 0 such that G is a

PGF module and TorRi pI
1,Mq � 0 for every i ¡ 0 and every module I 1 with

finite injective dimension.
(6) There exists a short exact sequence 0 ÑM Ñ GÑM Ñ 0 such that G is

a PGF module and I 1 b � preserves exactness of this sequence for every
module I 1 with finite injective dimension.

Proof. This follows immediately from the definition of the class S-PGF
p2q
I pRq and

Proposition 4.1, using standard arguments. �

Proposition 4.3. Every module in PGF
p2q
I pRq is a direct summand of a module in

S-PGF
p2q
I pRq.
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Proof. Let M be a module in PGF
p2q
I pRq. Then, there exists an exact sequence of

PGF modules

G � � � � Ñ G1
dG1ÝÝÑ G0

dG0ÝÝÑ G�1

dG
�1
ÝÝÑ G�2 Ñ � � �

such that M � ImpdG0 q and such that the sequence I bG is exact for every injective
module I.

For every n P Z, we denote by ΣnG the exact sequence obtained from G by
increasing all indices by n: pΣnGqi � Gi�n and dΣnG

i � dGi�n for every i P Z.
We consider now the exact sequence

à

nPZ
pΣnGq � � � � Ñ

à

iPZ
Gi

À
iPZ d

G
iÝÝÝÝÝÑ
à

iPZ
Gi

À
iPZ d

G
iÝÝÝÝÝÑ
à

iPZ
Gi Ñ � � �

where Imp
À

iPZ d
G
i q �
À

iPZ ImdGi and so M is a direct summand of Imp
À

iPZ d
G
i q.

Since the class PGF(R) is closed under direct sums, we obtain that the moduleÀ
iPZGi is also PGF.
Moreover, by Proposition 20.2 (3) of [1],we have the isomorphism of complexes

I b p
à

nPZ
pΣnGqq �

à

nPZ
pI b ΣnGq

which is an exact sequence for every injective module I. Thus, Imp
À

iPZ d
G
i q lies in

S-PGF
p2q
I pRq and M is a direct summand of this module. �

Definition 4.4. Let M be a module in S-PGF
p2q
I pRq. We say that a module N is

an M -type module if there exists a short exact sequence of the form

0 ÑM Ñ N Ñ GÑ 0,

where G is a PGF module.

Proposition 4.5. Let M be a module in S-PGF
p2q
I pRq and N be an M -type module.

Then, the following hold.

(1) TorRi pI,Nq � 0 for every i ¡ 0 and every injective module I.
(2) There exists an exact sequence of the form 0 Ñ N Ñ P Ñ K Ñ 0, where P

is projective, K is an M-type module and the functor I b� preserves the
exactness of this sequence for every injective module I.

Proof. (1) Let I be an injective module. Since N is an M -type module, there exists
a short exact sequence of the form 0 ÑM Ñ N Ñ GÑ 0, where G is PGF, which
induces a long exact sequence of the form

� � � Ñ TorRi pI,Mq Ñ TorRi pI,Nq Ñ TorRi pI,Gq Ñ � � � ,

where i ¡ 0. Since M P S-PGF
p2q
I pRq, by Proposition 4.2 (3), we have TorRi pI,Mq �

0 for every i ¡ 0. Moreover, Proposition 2.7 (2) yields TorRi pI,Gq � 0 for every

i ¡ 0. Consequently, TorRi pI,Nq � 0, for every i ¡ 0 and every injective module I.

(2) Since M P S-PGF
p2q
I pRq, there exists a short exact sequence of the form

0 ÑM Ñ G1 ÑM Ñ 0, where G1 is a PGF module. Since N is an M -type module,
there exists also a short exact sequence of the form 0 ÑM Ñ N Ñ GÑ 0, where G
is a PGF module. Consider the pushout diagram of the above short exact sequences:
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0 0

0 M G1 M 0

0 N F M 0

G G

0 0

{

�

�

Since the class PGF(R) is closed under extensions, using the short exact sequence
0 Ñ G1 Ñ F Ñ GÑ 0, we obtain that the module F is also PGF. Thus, there exists
a short exact sequence of the form 0 Ñ F Ñ P Ñ F 1 Ñ 0, where P is projective
and F 1 is PGF. Consider now the following pushout diagram:

0 0

0 N F M 0

0 N P K 0

F 1 F 1

0 0

�

{

�

Since F 1 is PGF, the module K is an M -type. By (1) we have TorR1 pI,Kq � 0 for
every injective module I. Thus, the sequence 0 Ñ I bN Ñ I b P Ñ I bK Ñ 0 is
exact for every injective module I. �

Corollary 4.6. Let M be a module in S-PGF
p2q
I pRq and N be an M -type module.

Then, N is PGF.

Proof. Since N is an M -type module, Proposition 4.5 (2) implies that there exists
a short exact sequence of the form 0 Ñ N Ñ P 0 Ñ K Ñ 0, where P 0 is projective,
K is an M -type and the functor I b� preserves the exactness of this sequence for
every injective module I. The iteration of this process yields an exact sequence

0 Ñ N Ñ P 0 Ñ P 1 Ñ P 2 Ñ � � � ,

where P i is projective for every i ¡ 0 and the functor I b� preserves the exactness
of this sequence for every injective module I. Using Proposition 4.5 (1), we also have

TorRi pI,Nq � 0 for every i ¡ 0 and every injective module I. Thus, Proposition 2.7
(2) implies that N is PGF. �

Theorem 4.7. PGFpRq � PGFp2qpRq � PGF
p2q
I pRq.
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Proof. It suffices to prove that PGF
p2q
I pRq � PGFpRq. Since the class PGF(R)

is closed under direct summands, by Proposition 4.3 it suffices to prove that

S-PGF
p2q
I pRq � PGFpRq. Let M be a module in S-PGF

p2q
I pRq. Thus, there exists

a short exact sequence of the form 0 Ñ M Ñ G Ñ M Ñ 0 such that the
module G is PGF. Since G is PGF, there exists a short exact sequence of the
form 0 Ñ GÑ P Ñ G1 Ñ 0, where P is projective and G1 is also a PGF module.
Consider the following pushout diagram:

0 0

0 M G M 0

0 M P U 0

G1 G1

0 0

�

{

�

Then, U is an M -type module and Corollary 4.6 implies that U is also a PGF
module. Since the class PGF(R) is closed under kernels of epimorphisms, the short
exact sequence 0 ÑM Ñ U Ñ G1 Ñ 0 implies that M is also PGF. �
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